
Title: Cooperative 3D Path Optimization (C3PO) Simulation

Authors: Blake Wall, Michael Lind

Abstract

Given a problem to get a group of unmanned vehicles from a starting location to a goal in 3 dimensions,

we were able to do so without a home base for communication. Starting out with full map knowledge,

the group would elect a leader, plan a path using Rapidly-Exploring Random Trees (RRTs), and move to

the goal using Artificial Potential Field. The simulation was created in the MASON multi-agent

simulation framework, and we were able to show that RRTs are a viable solution for path planning in 3

dimensions. We were also able to show how certain input parameters affect the ability to plan paths

quickly.

Background

Path planning in 3 dimensions is significantly harder than in 2 dimensions, because the third dimension

adds many more possible paths to the goal. It is almost impossible to find an exact solution to this

problem in real time, and even using approximation algorithms, calculating such paths in real time is

difficult [1]. The path planning algorithm used must then almost certainly be probabilistic and will not

provide a guaranteed shortest path. The most appropriate algorithm that we found for this calculation

was Rapidly-Exploring Random Trees (RRTs) [2].

RRTs work by iteratively picking a random point in

space and adding a branch onto the existing tree that

extends towards that point. The tree initially consists

of only the root, which is the starting point for the

path. As branches are added, they are checked to

make sure they meet the requirements that the

unmanned vehicle (UV) can traverse from one state to

the next (i.e. the turning radius is not too small) and

that the path from one state to the next does not

cause the UV to crash into any obstacles. This is an

important feature of RRTs in that they can build paths

where the UV is guaranteed to be able to follow the

path. When non-holonomic constraints are put on the

system, it dramatically decreases the possible moves

from one state to the next, and taking these

constraints into account while building the path saves

the effort of having to recalculate the path because of the inability to follow the path. Eventually a

branch is added that extends to the goal. Once this happens, the branch can be followed back to the

root; this is the path returned from the RRT algorithm. It is important to note that the random point in

space is chosen before the branch on which to add it. If the branch is chosen first, the tree tends to

search space that has already been explored. RRTs have the nice property that they tend to explore

Figure 1: Path Planning using RRT algorithm

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
10 NOV 2015

2. REPORT TYPE
Summary

3. DATES COVERED
01 OCT 2014 - 31 SEP 2015

4. TITLE AND SUBTITLE
Cooperative 3D Path Optimization (C3PO)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Blake Wall Michael Lind

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Space and Naval Warfare System Center Atlantic 1 Innovation Dr,
Hanahan, SC 29410

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Given a problem to get a group of unmanned vehicles from a starting location to a goal in 3 dimensions, we
were able to do so without a home base for communication. Starting out with full map knowledge, the
group would elect a leader, plan a path using Rapidly-Exploring Random Trees (RRTs), and move to the
goal using Artificial Potential Field. The simulation was created in the MASON multi-agent simulation
framework, and we were able to show that RRTs are a viable solution for path planning in 3 dimensions.
We were also able to show how certain input parameters affect the ability to plan paths quickly.

15. SUBJECT TERMS
Cooperative 3D Path Optimization Planning dimension swarm RRT artificial potential field robot
unmanned vehicle

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

open spaces. Figure 1 shows an example RRT being built, and the red points would be returned as the

path from start to the goal location.

MASON Simulation Framework

The MASON framework [3] is a discrete event framework written in Java that allows for rapid

development of multi-agent simulations. It follows the Model-View-Controller paradigm. It can

produce logs, track changes to variables over time, and produce graphics. It is easy to control

parameters, even allowing for manually changing them during runtime. Simulations can be started,

paused, saved to disk, and resumed at a later date. Graphics can also be turned off for faster

simulations; this approach was taken after our design of experiments to calculate potentially

troublesome or interesting relationships between specific input parameters and output parameters.

The simulations themselves were programed as follows: All UVs are assumed to be point objects with a

heading. Movement would consist of moving along the heading and being able to turn the heading (in

any direction) over time as allowed by the minimum turning radius. All obstacles are assumed to be

point objects with different radii. Coming into contact with an obstacle’s surface was assumed to be a

crash. UVs could also come into contact with one another; this was assumed to be a different type of

crash. Both types of crashes were captured.

Each UV was given full map knowledge before the simulation. However, location of other UVs was only

able to be obtained by the other UVs broadcasting their locations. Only point to point communication

was allowed and this was bounded by a maximum communication distance (variable over different

experiments). Communication was considered to be imperfect and any partial message was dropped;

this communication error rate was also variable over the experiments. Leader determination must

occur locally within the agents themselves; no external decision maker is available to the UVs. Simple

maps were used with minimal obstacles to prove the viability of RRTs; harder maps would have tested

more of the shortcomings of movement by Artificial Potential Field (APF).

Analytical Methodology

In order to learn about this complex system, our analysis is accomplished in three phases: Designing

simulations (aka “experiments”), running each simulation, and then evaluating different metamodels by

best-fitting simulation results.

1 - Design of experiments

Our simulation contains 25 input factors and 8 output factors (listed in Appendix A). The authors utilized

the SEED Center for Data Farming template for data design [4]. The purpose was to design a set of

experiments that was Nearly Orthogonal and Balanced (NOB) which provides the framework for finding

correlations between input and output factors while minimizing the overall number of design points.

We were able to search for first-order interactions between inputs, as well as quadratic effects. The

worksheet generated 512 such experiments over the full range of input values in each category (input

ranges were chosen either arbitrarily or with domain knowledge based on research into the UV field).

2 – Ran simulations with replications

We simulated these experiments using MASON and captured the results. Each simulation was run until

it met a Stopping Condition, which defined colloquially are “Mission Complete”, or “Ran out of time.”

3 – Evaluated meta-modes

These results were then imported into JMP Pro [4], where we were able to find interesting relationships

between input and output factors. Significant relationships are discussed below.

Findings

The most significant factor that goes into finding a path quickly is the GOAL_PERCENT. This number

represents probability that the “random” point in space added to the RRT represents the goal. The

higher this percent, the more often the tree tries to grow directly towards the goal. Results show that if

goal_percent is too small (below 10%), a higher Tree Size will be produced.

Variable Profiler of Significant Variables on predicting Tree Size

This graphic shows the influence of goal_percent on Tree Size compared to the other statistically

significant variables.

It is our hypothesis that as the maps get harder, having the GOAL_PERCENT be too large would increase

the tree size dramatically; this should be tested in later experiments.

In our experiments, UVs were completely able to avoid each other. No UV crashes were reported in any

of the experiments. Some experiments showed higher likelihood for UVs being within a “warning

range,” but no input factors seemed to correlate with this output. However, there were sometimes

obstacle crashes. The most significant feature that determined obstacle crashes was the virtual force

applied by the obstacle in the APF algorithm. This is both intuitive and fairly obvious as to why that

would lead to more crashes.

The number of paths calculated was another metric captured. One of the features of the APF algorithm

is that it can get stuck in local minima where the force applied to it from all directions is essentially

summed to 0. When this happens, the UV must find another path to the goal and this requires

recalculation of the path. The way for a UV to know whether or not it is stuck is to determine how much

it has moved over some amount of time. This calculation involves keeping a certain number of previous

moves and having some minimum distance that must have been moved over that time period.

We’ve determined that the significant factors that can predict “Number of Paths Calculated” are:

Last_moves_kept, minimum_disntance_moved, and uv_max_velocity.

 More investigation is required, but we believe these results are related to following phenomenon: as

UVs incorrectly assume they are in a local minimum when in fact, given their maximum velocity and the

number of moves kept, they are simply unable to move the required minimum distance in time.

The last significant finding was that the radio range was the biggest factor in determining the time for all

UVs to finish. As the radio range increased past a certain limit, UV missions almost always failed.

 We believe this is a by-product

of the simulation itself in that

UVs only considered themselves

to have reached the goal if the

center point between all known

UVs reached the goal. As the

radio range increases, the UVs

are able to communicate with

those that were

stuck/lost/crashed at significant

distances away from the goal.

This causes the UVs that reached

the goal to consider themselves

to not have finished either.

Therefore, we’ve identified that

knowledge of distance from other UVs is critical for mission success.

Recommendations and Future Work

Since GOAL_PERCENT is most significant factor for determining the tree size, it might be possible to

parameterize it and tune it depending on specific map properties (number of obstacles, percent free

space, etc.). It may also be possible to tune the maximum branch size for the tree to get longer

branches. It makes sense that in open space this would lead to smaller (by number of nodes) trees. For

future work, the authors would like to test out tuning these parameters on different maps. The authors

would especially like to try starting with very high maximum branch size and gradually make it smaller as

suitable paths can’t be found.

The authors would also like to try this set of algorithms with more realistic movement, specifically

quadcopter movement. Taking quadcopter limitations into consideration when planning the path with

RRTs would be a viable next step for the development of this algorithm set for UV movement.

The authors would also like to use this set of algorithms when the UVs do not know the full map and

obstacles are instead discoverable. This has been previously used in 2 dimensions with success, so 3

dimensions should be possible.

Works Cited

[1] Z. K. a. B. M. C. Goerzen, "A Survey of Motion Planning Algorithms from the Perspective of

Autonomous UAV Guidance," Journal of Intelligent and Robotic Systems, pp. 65-100, 2010.

[2] S. M. Lavelle, "Rapidly-Exploring Random Trees: A New Tool for Path Planning," 1998.

[3] L. e. al., "Multi Agent Simulator Of Networks," [Online]. Available:

https://cs.gmu.edu/~eclab/projects/mason/. [Accessed 22 September 2015].

[4] Vieira, Jr., H., Sanchez, S. M., Kienitz, K.H., Belderrain, M. C. N. 2012. Conducting trade-off- analyses

via simulation: Efficient nearly orthogonal nearly balanced mixed design. Working paper, Operations

Research Department, Naval Postgraduate School, Monterey, CA.

[5] S. Institute, "JMP Pro," [Online]. Available: http://www.jmp.com/en_us/software/jmp-pro.html.

[Accessed 22 September 2015].

Appendix A

Input factors:

• radio_range

• children_timeout

• alive_timeout

• time_per_move

• send_info_delta

• clock_tick

• uv_mass

• uv_max_velocity

• uv_centripetal_force

• uv_max_acceleration

• last_moves_kept

• minimum_distance_moved

• goal_radius

• sink_radius

• goal_percent

• obstacle_push_range

• obstacle_push_constant

• obstacle_push_type

• uv_push_range

• uv_push_constant

• uv_push_type

• uv_pull_range

• uv_pull_constant

• force_mask

• coms_loss

Output factors:

• Time spent in the warning zone for any

obstacle

• Time spent crashing into any obstacle

• Time spent in the warning zone for any UV

• Time spent crashing into any UV

• Number of path calculations

• Number of simulation steps taken to get to

the goal

• Number of UVs that found the goal

• Average tree size (by number of nodes)

